**Education**

- Ph.D., University of Georgia
- B.S., Universita di Torino
- Accounting, Accounting Technical Institute

**About Daniele Arcara Ph.D. **

**Contact**

Email |
daniele.arcara@stvincent.edu |

Phone |
724-805-2934 |

**Office Location**

Dupre Science Pavilion, W207

**Publications**

- D. Arcara, A lower bound for the dimension of the base locus of the generalized theta divisor, C. R. Acad. Sci. Paris, Ser. I 340 (2005), Issue 2, pp. 131-134.
- D. Arcara, Extensions and rank-2 vector bundles on irreducible nodal curves, Internat. J. Math., Vol. 16, No. 10 (2005), pp. 1081-1118.
- D. Arcara, Y.-P. Lee, Tautological equations in genus 2 via invariance constraints, Bull. Inst. Math. Acad. Sin. (N.S.) 2 (2007), no. 1, pp. 1-27.
- D. Arcara, Y.-P. Lee, On independence of generators of tautological rings, Comp. Math. 144 (2008), no. 6, pp. 1497-1503.
- D. Arcara, Y.-P. Lee, A new Tautological Relation in \Mbar_{3,1} via the Invariance Constraint, Canad. Math. Bull. Vol. 52 (2), 2009, pp. 161-174.
- D. Arcara, F. Sato, Recursive formula for \psi^g-\lambda_1\psi^{g-1}+...+(-1)^g\lambda_g in \overline{M}_{g,1}, Proc. Amer. Math. Soc. 137 (2009), no. 12, pp. 4077-4081.
- D. Arcara, A. Bertram, Reider's Theorem and Thaddeus Pairs Revisited, in Grassmannians, Moduli Spaces and Vector Bundles, Clay Mathematics Proceedings, Volume 14, 2011.
- D. Arcara, A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces, J. of the European Math. Soc., Volume 15, Issue 1, 2013, pp. 1-38 (with an appendix by Max Lieblich).
- D. Arcara, A. Bertram, I. Coskun, J. Huizenga, The minimal model program for the Hilbert scheme of points on P^2 and Bridgeland stability, Advances in Mathematics 235 (2013), pp. 580-626.

**Related Publications**

- D. Arcara, A lower bound for the dimension of the base locus of the generalized theta divisor, C. R. Acad. Sci. Paris, Ser. I 340 (2005), Issue 2, pp. 131-134.
- D. Arcara, Extensions and rank-2 vector bundles on irreducible nodal curves, Internat. J. Math., Vol. 16, No. 10 (2005), pp. 1081-1118.
- D. Arcara, Y.-P. Lee, Tautological equations in genus 2 via invariance constraints, Bull. Inst. Math. Acad. Sin. (N.S.) 2 (2007), no. 1, pp. 1-27.
- D. Arcara, Y.-P. Lee, On independence of generators of tautological rings, Comp. Math. 144 (2008), no. 6, pp. 1497-1503.
- D. Arcara, A. Bertram, Reider's Theorem and Thaddeus Pairs Revisited, in Grassmannians, Moduli Spaces and Vector Bundles, Clay Mathematics Proceedings, Volume 14, 2011.
- D. Arcara, A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces, J. of the European Math. Soc., Volume 15, Issue 1, 2013, pp. 1-38 (with an appendix by Max Lieblich).
- D. Arcara, A. Bertram, I. Coskun, J. Huizenga, The minimal model program for the Hilbert scheme of points on P^2 and Bridgeland stability, Advances in Mathematics 235 (2013), pp. 580-626.
- D. Arcara, Y.-P. Lee, A new Tautological Relation in \Mbar_{3,1} via the Invariance Constraint, Canad. Math. Bull. Vol. 52 (2), 2009, pp. 161-174.
- D. Arcara, F. Sato, Recursive formula for \psi^g-\lambda_1\psi^{g-1}+...+(-1)^g\lambda_g in \overline{M}_{g,1}, Proc. Amer. Math. Soc. 137 (2009), no. 12, pp. 4077-4081.

**Courses Taught**

- Abstract Algebra
- Abstract Algebra II
- Calculus I
- Calculus II
- Calculus III
- Cooperative Education
- Independent Study
- Mechanics: Dynamics
- Mechanics: Statics

**Committee Service**

- Faculty Compensation Committee, 2007-2012, chair 2011-2012.
- Faculty Council, 2009-2012.
- Hourly Grievance Committee, 2008-2009.
- Nominations and Elections Committee, 2008-present, chair 2009-2011.
- Student Faculty Administration Benedictine Committee, 2007-2008, 2009-present.
- Student Government Association, as Faculty Advisor, 2009-present.

#### Upcoming Events More

#### Contact Us

###### Information

**Phone:** 724-532-6600
Ext.

**Email:** info@stvincent.edu

300 Fraser Purchase Road

Latrobe, PA 15650-2690

P: 724-532-6600

© 2020 Saint Vincent College. All rights reserved.

Latrobe, PA 15650-2690

P: 724-532-6600

© 2020 Saint Vincent College. All rights reserved.